\(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{x^3 (d+e x)} \, dx\) [443]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 40, antiderivative size = 202 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3 (d+e x)} \, dx=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 d x^2}-\frac {\left (\frac {c}{a e}-\frac {3 e}{d^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 x}+\frac {\left (c d^2-a e^2\right ) \left (c d^2+3 a e^2\right ) \text {arctanh}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 a^{3/2} d^{5/2} e^{3/2}} \]

[Out]

1/8*(-a*e^2+c*d^2)*(3*a*e^2+c*d^2)*arctanh(1/2*(2*a*d*e+(a*e^2+c*d^2)*x)/a^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2
+c*d^2)*x+c*d*e*x^2)^(1/2))/a^(3/2)/d^(5/2)/e^(3/2)-1/2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/d/x^2-1/4*(c/a
/e-3*e/d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {863, 848, 820, 738, 212} \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3 (d+e x)} \, dx=\frac {\left (c d^2-a e^2\right ) \left (3 a e^2+c d^2\right ) \text {arctanh}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 a^{3/2} d^{5/2} e^{3/2}}-\frac {\left (\frac {c}{a e}-\frac {3 e}{d^2}\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 x}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 d x^2} \]

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x^3*(d + e*x)),x]

[Out]

-1/2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d*x^2) - ((c/(a*e) - (3*e)/d^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)
*x + c*d*e*x^2])/(4*x) + ((c*d^2 - a*e^2)*(c*d^2 + 3*a*e^2)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*S
qrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*a^(3/2)*d^(5/2)*e^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 820

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Dist[
(b*(e*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x]
, x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[S
implify[m + 2*p + 3], 0]

Rule 848

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(e*f - d*g)*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[1/((m
 + 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[(c*d*f - f*b*e + a*e*g)*(m + 1)
 + b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p])

Rule 863

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + c*(
x/e))*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rubi steps \begin{align*} \text {integral}& = \int \frac {a e+c d x}{x^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx \\ & = -\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 d x^2}-\frac {\int \frac {-\frac {1}{2} a e \left (c d^2-3 a e^2\right )+a c d e^2 x}{x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{2 a d e} \\ & = -\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 d x^2}-\frac {\left (\frac {c}{a e}-\frac {3 e}{d^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 x}-\frac {\left (\frac {c^2 d^2}{a}+2 c e^2-\frac {3 a e^4}{d^2}\right ) \int \frac {1}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 e} \\ & = -\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 d x^2}-\frac {\left (\frac {c}{a e}-\frac {3 e}{d^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 x}+\frac {\left (\frac {c^2 d^2}{a}+2 c e^2-\frac {3 a e^4}{d^2}\right ) \text {Subst}\left (\int \frac {1}{4 a d e-x^2} \, dx,x,\frac {2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{4 e} \\ & = -\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 d x^2}-\frac {\left (\frac {c}{a e}-\frac {3 e}{d^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 x}+\frac {\left (c d^2-a e^2\right ) \left (c d^2+3 a e^2\right ) \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 a^{3/2} d^{5/2} e^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 10.12 (sec) , antiderivative size = 162, normalized size of antiderivative = 0.80 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3 (d+e x)} \, dx=\frac {\sqrt {(a e+c d x) (d+e x)} \left (\frac {\sqrt {a} \sqrt {d} \sqrt {e} \left (-c d^2 x+a e (-2 d+3 e x)\right )}{x^2}+\frac {\left (c^2 d^4+2 a c d^2 e^2-3 a^2 e^4\right ) \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {e} \sqrt {d+e x}}\right )}{\sqrt {a e+c d x} \sqrt {d+e x}}\right )}{4 a^{3/2} d^{5/2} e^{3/2}} \]

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x^3*(d + e*x)),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*((Sqrt[a]*Sqrt[d]*Sqrt[e]*(-(c*d^2*x) + a*e*(-2*d + 3*e*x)))/x^2 + ((c^2*d^4 +
2*a*c*d^2*e^2 - 3*a^2*e^4)*ArcTanh[(Sqrt[d]*Sqrt[a*e + c*d*x])/(Sqrt[a]*Sqrt[e]*Sqrt[d + e*x])])/(Sqrt[a*e + c
*d*x]*Sqrt[d + e*x])))/(4*a^(3/2)*d^(5/2)*e^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1352\) vs. \(2(176)=352\).

Time = 0.76 (sec) , antiderivative size = 1353, normalized size of antiderivative = 6.70

method result size
default \(\text {Expression too large to display}\) \(1353\)

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^3/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

1/d*(-1/2/a/d/e/x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)-1/4*(a*e^2+c*d^2)/a/d/e*(-1/a/d/e/x*(a*d*e+(a*e^2+
c*d^2)*x+c*d*e*x^2)^(3/2)+1/2*(a*e^2+c*d^2)/a/d/e*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^2)*l
n((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)-a*d*e/(a*
d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x))+2*c/a*(1/4
*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d
/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)))+1/2
*c/a*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)
+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d
*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x)))+e^2/d^3*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(
a*e^2+c*d^2)*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(
1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/
x))-e/d^2*(-1/a/d/e/x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+1/2*(a*e^2+c*d^2)/a/d/e*((a*d*e+(a*e^2+c*d^2)*x+
c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e
*x^2)^(1/2))/(c*d*e)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2
)*x+c*d*e*x^2)^(1/2))/x))+2*c/a*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8
*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c
*d*e*x^2)^(1/2))/(c*d*e)^(1/2)))-e^2/d^3*((c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)+1/2*(a*e^2-c*d^2)*ln((
1/2*e^2*a-1/2*c*d^2+c*d*e*(x+d/e))/(c*d*e)^(1/2)+(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.63 (sec) , antiderivative size = 442, normalized size of antiderivative = 2.19 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3 (d+e x)} \, dx=\left [-\frac {{\left (c^{2} d^{4} + 2 \, a c d^{2} e^{2} - 3 \, a^{2} e^{4}\right )} \sqrt {a d e} x^{2} \log \left (\frac {8 \, a^{2} d^{2} e^{2} + {\left (c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} x^{2} - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {a d e} + 8 \, {\left (a c d^{3} e + a^{2} d e^{3}\right )} x}{x^{2}}\right ) + 4 \, {\left (2 \, a^{2} d^{2} e^{2} + {\left (a c d^{3} e - 3 \, a^{2} d e^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{16 \, a^{2} d^{3} e^{2} x^{2}}, -\frac {{\left (c^{2} d^{4} + 2 \, a c d^{2} e^{2} - 3 \, a^{2} e^{4}\right )} \sqrt {-a d e} x^{2} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {-a d e}}{2 \, {\left (a c d^{2} e^{2} x^{2} + a^{2} d^{2} e^{2} + {\left (a c d^{3} e + a^{2} d e^{3}\right )} x\right )}}\right ) + 2 \, {\left (2 \, a^{2} d^{2} e^{2} + {\left (a c d^{3} e - 3 \, a^{2} d e^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{8 \, a^{2} d^{3} e^{2} x^{2}}\right ] \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^3/(e*x+d),x, algorithm="fricas")

[Out]

[-1/16*((c^2*d^4 + 2*a*c*d^2*e^2 - 3*a^2*e^4)*sqrt(a*d*e)*x^2*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 +
a^2*e^4)*x^2 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(a*d*e) + 8*(a*
c*d^3*e + a^2*d*e^3)*x)/x^2) + 4*(2*a^2*d^2*e^2 + (a*c*d^3*e - 3*a^2*d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2
 + a*e^2)*x))/(a^2*d^3*e^2*x^2), -1/8*((c^2*d^4 + 2*a*c*d^2*e^2 - 3*a^2*e^4)*sqrt(-a*d*e)*x^2*arctan(1/2*sqrt(
c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-a*d*e)/(a*c*d^2*e^2*x^2 + a^2*d^2*e
^2 + (a*c*d^3*e + a^2*d*e^3)*x)) + 2*(2*a^2*d^2*e^2 + (a*c*d^3*e - 3*a^2*d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c
*d^2 + a*e^2)*x))/(a^2*d^3*e^2*x^2)]

Sympy [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3 (d+e x)} \, dx=\int \frac {\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}{x^{3} \left (d + e x\right )}\, dx \]

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/x**3/(e*x+d),x)

[Out]

Integral(sqrt((d + e*x)*(a*e + c*d*x))/(x**3*(d + e*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3 (d+e x)} \, dx=\int { \frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{{\left (e x + d\right )} x^{3}} \,d x } \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^3/(e*x+d),x, algorithm="maxima")

[Out]

integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/((e*x + d)*x^3), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 505 vs. \(2 (176) = 352\).

Time = 0.31 (sec) , antiderivative size = 505, normalized size of antiderivative = 2.50 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3 (d+e x)} \, dx=-\frac {{\left (c^{2} d^{4} + 2 \, a c d^{2} e^{2} - 3 \, a^{2} e^{4}\right )} \arctan \left (-\frac {\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}}{\sqrt {-a d e}}\right )}{4 \, \sqrt {-a d e} a d^{2} e} + \frac {{\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} a c^{2} d^{5} e + 10 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} a^{2} c d^{3} e^{3} + 5 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} a^{3} d e^{5} + 8 \, \sqrt {c d e} a^{3} d^{2} e^{4} + {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{3} c^{2} d^{4} + 2 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{3} a c d^{2} e^{2} - 3 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{3} a^{2} e^{4} + 8 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{2} a c d^{3} e}{4 \, {\left (a d e - {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{2}\right )}^{2} a d^{2} e} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^3/(e*x+d),x, algorithm="giac")

[Out]

-1/4*(c^2*d^4 + 2*a*c*d^2*e^2 - 3*a^2*e^4)*arctan(-(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e
))/sqrt(-a*d*e))/(sqrt(-a*d*e)*a*d^2*e) + 1/4*((sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a
*c^2*d^5*e + 10*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a^2*c*d^3*e^3 + 5*(sqrt(c*d*e)*x
 - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a^3*d*e^5 + 8*sqrt(c*d*e)*a^3*d^2*e^4 + (sqrt(c*d*e)*x - sqrt(
c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^3*c^2*d^4 + 2*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*
d*e))^3*a*c*d^2*e^2 - 3*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^3*a^2*e^4 + 8*sqrt(c*d*e
)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^2*a*c*d^3*e)/((a*d*e - (sqrt(c*d*e)*x - sqrt(c
*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^2)^2*a*d^2*e)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3 (d+e x)} \, dx=\int \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{x^3\,\left (d+e\,x\right )} \,d x \]

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(x^3*(d + e*x)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(x^3*(d + e*x)), x)